Package: T4transport 0.1.2

T4transport: Tools for Computational Optimal Transport

Transport theory has seen much success in many fields of statistics and machine learning. We provide a variety of algorithms to compute Wasserstein distance, barycenter, and others. See Peyré and Cuturi (2019) <doi:10.1561/2200000073> for the general exposition to the study of computational optimal transport.

Authors:Kisung You [aut, cre]

T4transport_0.1.2.tar.gz
T4transport_0.1.2.zip(r-4.5)T4transport_0.1.2.zip(r-4.4)T4transport_0.1.2.zip(r-4.3)
T4transport_0.1.2.tgz(r-4.4-x86_64)T4transport_0.1.2.tgz(r-4.4-arm64)T4transport_0.1.2.tgz(r-4.3-x86_64)T4transport_0.1.2.tgz(r-4.3-arm64)
T4transport_0.1.2.tar.gz(r-4.5-noble)T4transport_0.1.2.tar.gz(r-4.4-noble)
T4transport_0.1.2.tgz(r-4.4-emscripten)T4transport_0.1.2.tgz(r-4.3-emscripten)
T4transport.pdf |T4transport.html
T4transport/json (API)
NEWS

# Install 'T4transport' in R:
install.packages('T4transport', repos = c('https://kisungyou.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kisungyou/t4transport/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • digit3 - MNIST Images of Digit 3
  • digits - MNIST Images of All Digits

On CRAN:

3.48 score 6 stars 5 scripts 182 downloads 24 exports 18 dependencies

Last updated 2 years agofrom:50165aaf94. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64OKNov 06 2024
R-4.5-linux-x86_64OKNov 06 2024
R-4.4-win-x86_64OKNov 06 2024
R-4.4-mac-x86_64OKNov 06 2024
R-4.4-mac-aarch64OKNov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:bary14Cbary14Cdistbary15Bbary15Bdistecdfbaryecdfmedgaussbary1dgaussbarypdgaussmed1dgaussmedpdgaussvis2dhistbary14Chistbary15Bhistmed22Yimagebary14Cimagebary15Bimagemed22YipotipotDsinkhornsinkhornDswdistwassersteinwassersteinD

Dependencies:bitbit64clarabelCVXRECOSolveRgmplatticelpSolveMatrixosqpR6rbibutilsRcppRcppArmadilloRcppEigenRdpackRmpfrscs