
Denoising with tvR package

Kisung You

For a given noisy signal f , total variation regularization (also known as denoising) aims at recovering a
cleaned version of signal u by solving an equation of the following form

min
u

E(u, f) + λV (u)

where E(u, f) is a fidelity term that measures closeness of noisy signal f to a desired solution u, and V (u) a
penalty term in pursuit of smoothness of a solution. For a differentiable function u : Ω→ R, total variation is
defined as

V (u) =
∫

Ω
‖∇u(x)‖dx

and λ a regularization parameter that balances fitness and smoothness defined by two terms.

Our tvR package provides two functions

• denoise1 for 1d signal (usually with time domain), and
• denoise2 for 2d signal such as image.

Let’s see two examples in the below.
library(tvR)

Example : 1d signal with denoise1

We aim to solve TV-L2 problem, where

E(u, f) = 1
2

∫
|u(x)− f(x)|2dx

with a penalty V (u) =
∑

i |ui+1 − ui| with two algorithms, including 1) iterative clippling algorithm and 2)
majorization-minorization method.

As an example, let’s create a stepped signal and add gaussian white noise with σ = 0.25
set.seed(1)
x = rep(sample(1:5,10,replace=TRUE), each=50) ## main signal
xnoised = x + rnorm(length(x), sd=0.25) ## add noise

First, let’s compare how two algorithms perform with λ = 1.0.
## apply denoising process
xproc1 = denoise1(xnoised, method = "TVL2.IC")
xproc2 = denoise1(xnoised, method = "TVL2.MM")
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which shows somewhat seemingly inconsistent results. However, this should be understood as induced by their
internal algorithmic details such as stopping criterion. In such sense, let’s compare whether a single method
is consistent with respect to the degree of regularization by varying parameters λ = 10−3, 10−2, 10−1, 1. For
this comparison, we will use iterative clipping (TVL2.IC) algorithm.
compare = list()
for (i in 1:4){
compare[[i]] = denoise1(xnoised, lambda = 10ˆ(i-4), method="TVL2.IC")

}
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An observation can be made that the larger the λ is, the smoother the fitted solution becomes.

Example : image denoising with denoise2

For a 2d signal case, we support both TV-L1 and TV-L2 problem, where

EL1(u, f) =
∫

Ω
|u(x)− f(x)|1dxEL2(u, f) =

∫
Ω
|u(x)− f(x)|22dx

given a 2-dimensional domain Ω ⊂ R2 and a penalty V (u) =
∑

(u2
x + u2

y)1/2. For TV-L1 problem, we provide
primal-dual algorithm, whereas TV-L2 brings primal-dual algorithm as well as finite-difference scheme with
fixed point iteration.

A typical yet major example of 2-dimensional signal is image, considering each pixel’s value as f(x, y) at
location (x, y). We’ll use the gold standard image of Lena. In our example, we will use a version of gray-scale
Lena image stored as a matrix of size 128× 128 and add some gaussian noise as before with σ = 10.
data(lena128)
xnoised <- lena128 + array(rnorm(128*128, sd=10), c(128,128))

Let’s see how different algorithms perform with λ = 10.
## apply denoising process
xproc1 <- denoise2(xnoised, lambda=10, method="TVL1.PrimalDual")
xproc2 <- denoise2(xnoised, lambda=10, method="TVL2.FiniteDifference")
xproc3 <- denoise2(xnoised, lambda=10, method="TVL2.PrimalDual")

3

https://en.wikipedia.org/wiki/Lenna


0.0 0.4 0.8

0.
0

0.
4

0.
8

Noised

0.0 0.4 0.8

0.
0

0.
4

0.
8

L1−PrimalDual

0.0 0.4 0.8

0.
0

0.
4

0.
8

L2−FiniteDifference

0.0 0.4 0.8

0.
0

0.
4

0.
8

L2−PrimalDual

4


	Example : 1d signal with denoise1
	Example : image denoising with denoise2

